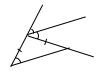
等腰三角形的判定

阅读与思考

在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总 结.

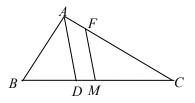
- 1. 等腰三角形的判定:
- (1)从定义入手,证明一个三角形的两条边相等;
- (2)从角入手,证明一个三角形的两个角相等.
- 2. 证明线段相等的方法:
- (1)当所证的两条线段位于两个三角形,通过全等三角形证明;
- (2)当所证的两条线段位于同一个三角形,通过等角对等边证明;
- (3)寻找某条线段,证明所证的两条线段都与它相等.

善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常 见的构造方法有: 平分线+平行线、平分线+垂线、中线+垂线. 如图所示:



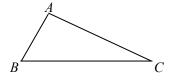
例题与求解

【例 1】如图,在 $\triangle ABC$ 中,AB=7,AC=11,点M是BC的中点,AD是 $\angle BAC$ 的平分线,MF//AD, 则 CF 的长为 .

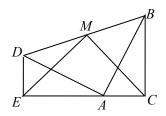


【**例 2**】如图,在 $\triangle ABC$ 中, $\angle B=2\angle C$,则 AC与 2AB 之间的关系是(

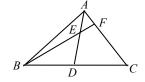
- A. AC > 2AB
- B. AC = 2AB
- C. *AC*≤2*AB* D. *AC*<2*AB*



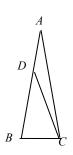
【例 3】两个全等的含 30° , 60° 角的三角板 ADE 和三角板 ABC,如图所示放置,E、A、C 三点在一条直线上,连结 BD,取 BD 中点 M,连结 ME,MC,试判断 $\triangle EMC$ 的形状,并说明理由.

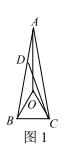


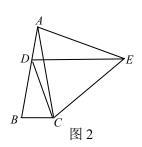
【例 4】如图,已知在 $\triangle ABC$ 中,AD 是 BC 边上的中线,E 是 AD 上一点,且 BE=AC,延长 BE 交 AC 于 F,求证: AF=EF.



【例 5】如图,在等腰 $\triangle ABC$ 中,AB=AC, $\angle A=20^{\circ}$,在边AB上取点D,使AD=BC,求 $\angle BDC$ 度数.



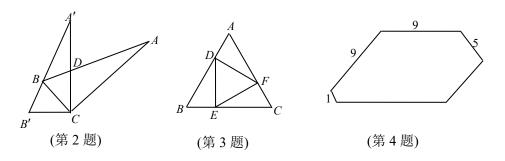




能力训练

A 级

- 1. 已知 $\triangle ABC$ 为等腰三角形,由顶点 A 所引 BC 边的高线恰等于 BC 边长的一半,则 $\angle BAC =$.
- 2. 如图,在 Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle ABC=66^{\circ}$, $\triangle ABC$ 以点 C为中点旋转到 $\triangle A'B'C$ 的位置,顶点 B 在斜边 A'B'上,A'C 与 AB 相交于 D,则 $\angle BDC$ = .

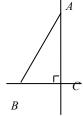


- 3. 如图, △ABC 是边长为 6 的等边三角形, $DE \perp BC$ 于 E, $EF \perp AC$ 于 F, $FD \perp AB$ 于 D, 则 AD=
- 4. 如图,一个六边形的六个内角都是 120° ,其连续四边的长依次是 1cm, 9cm , 9cm , 5cm , 那 么这个六边形的周长是 $_{---}$ cm.
- 5. 如图, $\triangle ABC$ 中,AB=AC, $\angle B=36^{\circ}$,D、E 是 BC 上两点,使 $\angle ADE=\angle AED=2\angle BAD$,则图中等 腰三角形共有()
 - A. 3个

B. 4个

C. 5个

D. 6个

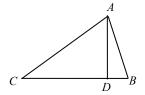


- 6. 若△ABC的三边长是a,b,c,且满足 $a^4 = b^4 + c^4 b^2 c^2$, $b^4 = a^4 + c^4 a^2 c^2$, $c^4 = a^4 + b^4 a^2 b^2$. 则 $\triangle ABC$ ()
- A. 钝角三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形
- 7. 等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()
- A. 30^{0}

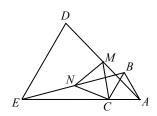
- B. 30⁰ 或 150⁰ C. 120⁰ 或 150⁰ D. 30⁰ 或 120⁰ 或 150⁰
- 8. 如图,已知 Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$, $\angle A=30^{\circ}$,在直线 BC或 AC 上取一点 P,使得 $\triangle PAB$ 是等腰三 角形,则符合条件的P点有()
 - A. 2 个
- B. 4个
- C. 6个
- D. 8个

- 9. 如图在等腰 Rt $\triangle ABC$ 中, $\angle ACB=90^{\circ}$,D为 BC中点, $DE \bot AB$,垂足为 E,过点 B 作 BF//AC 交 DE 的延长线于点 F,连接 CF 交 AD 于 G.
 - (1) 求证: *AD*⊥*CF*;
 - (2) 连结 AF,度判断 $\triangle ACF$ 的形状,并说明理由.

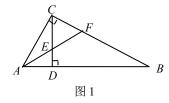
10. 如图, $\triangle ABC$ 中, $AD \perp BC \mp D$, $\angle B=2 \angle C$, 求证: AB+BD=CD.

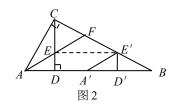


11. 如图,已知 $\triangle ABC$ 是等边三角形,E 是 AC 延长线上一点,选择一点 D,使得 $\triangle CDE$ 是等边三角形,如果 M 是线段 AD 的中点,N 是线段 BE 的中点,求证: $\triangle CMN$ 是等边三角形.



12. 如图 1,Rt $\triangle ABC$ 中, $\angle ACB=90^{0}$, $CD\perp AB$,垂足为D,AF 平分 $\angle CAB$,交CD 于点E,交CB 于点F.



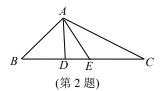


- (1) 求证: CE=CF;
- (2) 将图 1 中的 $\triangle ADE$ 沿 AB 向右平移到 $\triangle A'D'E$ 的位置,使点 E'落在 BC 边上,其他条件不变,如图 2 所示,试猜想:BE'与 CF 有怎样的数量关系?请证明你的结论.

B级

1. 如图, $\triangle ABC$ 中,AD 平分 $\angle BAC$,AB+BD=AC,则 $\angle B$: $\angle C$ 的值=_____.

B D C (第 1 题)



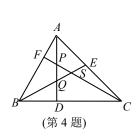
- 2. 如图, $\triangle ABC$ 的两边 AB、AC 的垂直平分线分别交 BC 于 D、E,若 $\angle BAC$ + $\angle DAE$ =150 0 ,则 $\angle BAC$ 的度数是
- 3. 在等边 $\triangle ABC$ 所在平面内求一点 P,使 $\triangle PAB$ 、 $\triangle PBC$ 、 $\triangle PAC$ 都是等腰三角形,具有这样性质的点 P 有
- 4. 如图,在 $\triangle ABC$ 中, $\angle ABC=60^\circ$, $\angle ACB=45^\circ$,AD、CF 都是高,相交于 P,角平分线 BE 分别交 AD、CF 于 Q、S,则图中的等腰三角形的个数是(

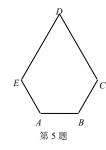
A. 2

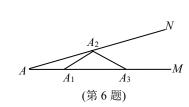
B. 3

C. 4

D. 5







5. 如图,在五边形 ABCDE 中, $\angle A=\angle B=120^{\circ}$, $EA=AB=BC=\frac{1}{2}$ $DC=\frac{1}{2}$ DE,则 $\angle D=($

A. 30^{0}

B. 45°

C. 60°

D. 67.5°

6. 如图, $\angle MAN=16^0$, A_1 点在 AM 上,在 AN 上取一点 A_2 ,使 $A_2A_1=AA_1$,再在 AM 上取一点 A_3 ,使 $A_3A_2=A_2A_1$,如此一直作下去,到不能再作为止,那么作出的最后一点是(

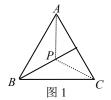
A. A_5

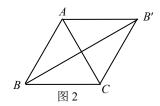
B. A_6

 $C. A_7$

D. A_8

7. 若 P 为 $\triangle ABC$ 所在平面内一点,且 $\angle APB=\angle BPC=\angle CPA=120^\circ$,则点 P 叫作 $\triangle ABC$ 的费尔马点,如图 1.

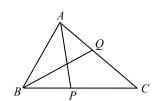




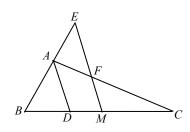
(1)若点 P 为锐角 $\triangle ABC$ 的费尔马点,且 $\angle ABC=60^{\circ}$,PA=3,PC=4,则 PB 的值为 .

(2)如图 2,在锐角 $\triangle ABC$ 外侧作等边 $\triangle ACB'$,连结 BB'. 求证: BB'过 $\triangle ABC$ 的费尔马点 P,且 BB'=PA+PB+PC.

8. 如图, $\triangle ABC$ 中, $\angle BAC=60^{\circ}$, $\angle ACB=40^{\circ}$,P、Q 分别在 BC、AC 上,并且 AP、BQ 分别是 $\angle BAC$ 、 $\angle ABC$ 的角平分线,求证: BQ+AQ=AB+BP.

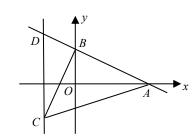


9. 如图,在 $\triangle ABC$ 中,AD 是 $\angle BAC$ 的平分线,M 是 BC 的中点,过 M 作 ME // AD 交 BA 延长线于 E,交 AC 于 F,求证:BE=CF= $\frac{1}{2}$ (AB+AC).



10. 在等边 $\triangle ABC$ 的边 BC 上任取一点 D,作 $\angle DAE=60^{\circ}$,DE 交 $\angle C$ 的外角平分线于 E,那么 $\triangle ADE$ 是什么三角形?证明你的结论.

- 11. 如图,在平面直角坐标系中,O 为坐标原点,直线 $l: y = -\frac{1}{2}x + m$ 与x 轴、y 轴的正半轴分别相交于点 A、B,过点 C(-4,-4)作平行于 y 轴的直线交 AB 于点 D,CD=10.
 - (1)求直线l的解析式;
 - (2)求证: △ABC 是等腰直角三角形;
- (3)将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点 A'、B',在直线 CD 上存在点 P,使得 $\triangle A'B'P$ 是等腰直角三角形,请直接写出所有符合条件的点 P 的坐标.



- 12. 如图 1,在平面直角坐标系中, $\triangle AOB$ 为等腰直角三角形,A(4, 4).
- (1) 求 B 点坐标;
- (2) 如图 2,若 C 为 x 轴正半轴上一动点,以 AC 为直角边作等腰直角 $\triangle ACD$, $\angle ACD$ =90 0 ,连接 OD,求 $\angle AOD$ 度数;
- (3) 如图 3,过点 A 作 y 轴于 E, F 为 x 轴负半轴上一点,G 在 EF 的延长线上,以 EG 为直角边作等 腰 $Rt\triangle EGH$,过 A 作 x 轴垂线交 EH 于点 M,连接 FM,等式 $\frac{AM-FM}{OF}$ =1 是否成立?若成立,请证明;若不成立,说明理由.

